澳门微尼斯人手机版考研数学大纲:高数要做实根基珍视计算

  近两年的考题开始重视学科之间的联系了,像今年概率大题中高数和概率的结合(利用级数求和算期望),以及数一的考生比较头疼的高数中解析几何与线代线性方程组之间的联系问题!能把这些综合性稍强的题目做对做好,需要扎实的基本功!这就要求大家首先不能偏科,我们在讲到数学三个科目复习的时候往往顺口就是“高数、线代、概率”的顺序,这并不代表线代、概率不重要或者概率最不重要,相反,任何一门偏科的话数学整体的分数肯定不会高的!但是每个人肯定都有自己的喜好,不喜欢的相对就学的不好,这很正常,但是为了考上研究生,即使是正常的事情我们也要找到对策,然后解决这个问题。建议大家在复习的时候可以先选择自己不擅长的科目,拿出一整段的时间来攻克这个难点,因为人的心理是越到最后越容易紧张,前期把最难的攻克,对于减轻日后复习的压力是很有帮助的。

  每年一到7、8月份,考生们最关心的就是大纲,尤其是试卷的难易度问题。数学教研室李老师,针对数学考试的命题特点和历年变化趋势,进行了权威判断和预测,希望能够帮助考生准确把握考点,做好强化阶段和冲刺阶段的复习。总体来看,近几年数学试卷难易程度基本稳定,考题在难易程度上基本没有太大的浮动,请看李老师初步预测的2012年数学考研大纲。

  2013年考研(微博)数学大(微博)纲刚刚出炉,今年的大纲和去年的大纲相比,整体上没有任何改变。考研数学包含三部分:高等数学、线性代数、概率论与数理统计(数二不要求)。其中,高等数学所占比重最大,数一、三中是56%,数二中高达78%,所以高等数学对数学总体成绩的高低就显得特别重要,正所谓“得高数者得天下”。

  其次,近十年的题目中有几年的题目都是将线代中的线性相关性、秩、方程组的解等等这些基本概念和平面解析几何(高数)中平面的直线方程、空间直线方程及平面方程在空间中的位置关系等结合在一起出题,这样的题目得分率往往很低。因为首先平面解析几何考生就不是很熟悉,线代的线性方程组这一章节又是比较晦涩难懂的部分,这两块结合到一起,不熟悉加上不太熟悉,就基本得不到分了!所以考生应该做到知识全面,多做一些相关的题目练一下手,不至于到时候真遇到了完全没有思路。最后,大家在复习的时候应该自己把学科之间可能有联系的地方做一下笔记,便于考前的集中突击。比如概率里面分布函数和概率密度函数,这部分内容和高数部分的由变上限积分确定的原函数有相似的地方,类似的知识点大家就应该仔细总结一下,相似点在哪里,又有什么不同。如果考纲中要求的知识点大家都能这样去研究,相信再难考的学校也会留下你的。

  高等数学

  高等数学包括函数极限连续、一元函数微积分学、多元函数微积分学、无穷级数(数二不要求)和常微分方程、向量代数和空间解析几何(仅数一考)。前四部分是高等数学部分出题的重点,新考纲对第五部分的要求写了多半页文字的规定,但从历年真题来看,针对这一部分出题的很少,即使出题,所占分值也是很少的。

  针对2015年试题特点,高等数学的复习应该怎能规划呢?在此,跨考教育[微博]数学教研室的边老师给2016年考研[微博]考生提出几点建议,供大家参考。

科目

  在新考纲发布后,如何复习高等数学才能取得高分,这是多数考生普遍关注的问题。在此,新东方在线(微博)的数学老师给2013年考研考生几点备考建议,供大家参考:

  1.重视基础。考研数学80%的题目是考基础的,包括基本概念、基本理论和基本方法。基本概念比如极限、连续、可导、可微、可积等。基本理论有单调有界准则和中值定理等。基本方法如极限的四则运算法则和罗必达法则等。从近十年考研数学真题来看,真正需要冥思苦想的偏题、难题只占少数。

大纲章节

  第一,夯实基础,把握重点。

  2.重视计算。考研数学80%都是计算题,所以你的计算能力不过关,一定拿不到高分。很多同学学习数学时眼高手低,就喜欢看例题,看别人做好的题目。只是一味的被动的接受别人的东西,就永远也变不成自己的东西。而且考研数学题的技巧性强,同样一个题目如果用常规方法做耗费的时间比较长,在考研中我们要寻求简单的方法和技巧,达到做题准、快。这里强调的是精练,不主张搞题海战术。

主要知识点

  考研数学主要是考基础,包括基本概念、基本公式、基本定理以及解题基本方法。从近十年考研数学真题来看,试卷中80%的题目都是基础题目,真正需要冥思苦想的偏题、难题只是少数。高数的基础应着重放在极限、导数、不定积分这三方面,后面当然还有定积分、一元函数微积分学的应用、中值定理、多元函数微积分等内容,这些内容可以看成是前三部分内容的应用。

  3.重视归纳总结。我们在做出每一道题目的时候,都要从两方面进行分析:这道题的类型如何求解和这道题中对你而言具有价值的知识点技巧等。每做完一道题目,要明白其解题思路,对于解题过程中所用到的方法、技巧进行归纳总结,如求极限、微分中值定理的使用,二重积分的计算等等。

主要考点

  在夯实基础的同时,把握重点。这个主要依据考纲以及历年真题的分析进行。比如高数第一章的未定式的极限,我们要充分把握求未定式极限的各种方法,比如利用极限的四则运算、洛必达法则、等价无穷小、重要极限公式等等,另外泰勒公式也是重点内容。对函数的连续性的探讨也是考试的重点,这要求我们需要充分理解函数连续的定义和掌握判定连续性的方法。

考生须重视程度

  第二,勤动脑,多动手,保证做题量。

高等

  很多同学学习数学时就喜欢看例题,看别人做好的题目,看别人分析、总结好的解题方法、步骤。只这样是远远不够的,只是一味的被动的接受别人的东西,就永远也变不成自己的东西。在做题时,一定要自己先思考,不管做到什么程度,最起码你思考了。只有这样,才能对知识有更深入的理解和掌握,才能真正成为自己的知识,也才会具有独立的解题能力。极限、导数、微分中值定理、积分及应用,仅对基本概念、基本定理熟练掌握是远远不够的,其灵活性和技巧性很强,只有通过多练,才能满足考试的要求。否则,当遇到具体题目时,就很有可能会积分而积不出结果,会求极限但求出的结果不对。这里强调的是精练,不主张搞题海战术。

数学

  另一方面,高数中的一些考题很少有单纯考一个知识点的,一般都是多个知识点的综合。这种综合能力的提升与多练又是存在必然联系的。

第一章 函数、极限、连续

  第三,重视总结、归纳解题思路、方法和技巧。

等价无穷小代换、洛必达法则、泰勒展开式

  同学们在学习每一个知识点的过程中,要做好笔记。对于自己不理解的地方要标记出来,便于后期进行查漏补缺。每做完一道题目,要明白其解题思路,对于解题过程中所用到的方法、技巧进行归纳总结,今后再遇到同类型题目时,不费吹灰之力便可解决。如在求解极限的题目中,什么时候使用洛必达法则、等价无穷小,这种解题技巧有必要进行总结。 

求函数的极限

  最后,新东方在线考研数学辅导团队祝大家备考顺利!

★★★★

分享到:

函数连续的概念、函数间断点的类型

;);););););)

判断函数连续性与间断点的类型

微博推荐

★★★

    更多信息请访问:新浪考研频道
考研论坛

第二章 一元函数微分学

  特别说明:由于各方面情况的不断调整与变化,新浪网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。

导数的定义、可导与连续之间的关系

按定义求一点处的导数,可导与连续的关系

★★★

函数的单调性、函数的极值

讨论函数的单调性、极值

★★★

闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理

微分中值定理及其应用

★★★★★

第三章 一元函数积分学

积分上限的函数及其导数

变限积分求导问题

★★★★★

有理函数、三角函数有理式、简单无理函数的积分

计算被积函数为有理函数、三角函数有理式、简单无理函数的不定积分和定积分

★★

第四章 向量代数和空间解析几何(数学一)

直线方程、平面方程、点到直线或点到平面的距离、曲面方程

直线与平面问题(主要是柱面或旋转曲面且母线不是坐标轴或不平行于坐标轴的问题)

第五章 多元函数微分学

隐函数、偏导数、全微分的存在性以及它们之间的因果关系

函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连续性的讨论与它们之间的因果关系

★★★

多元复合函数、隐函数的求导法

求偏导数,全微分

★★★★★

第六章 多元函数积分学(数学一)

格林公式、平面曲线积分与路径无关的条件

平面第二型曲线积分的计算,平面曲线积分与路径无关条件的应用

★★★★★

高斯公式